GCE

Physics A

Advanced GCE

Mark Scheme for January 2012

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2012
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 ODL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

Annotations available in Scoris

Annotation	Meaning
[1] ${ }^{\text {a }}$	Benefit of doubt given
[[4]]	Contradiction
3	Incorrect response
[-[.	Error carried forward
[-T	Follow through
[1040]	Not answered question
Pers	Benefit of doubt not given
ITH	Power of 10 error
-	Omission mark
[:1]	Rounding error
\%	Error in number of significant figures
\checkmark	Correct response
+1]	Arithmetic error
6	Wrong physics or equation

Annotations in detailed mark scheme

Annotation	Meaning
\boldsymbol{l}	alternative and acceptable answers for the same marking point
$\mathbf{(1)}$	Separates marking points
reject	Answers which are not worthy of credit
not	Answers which are not worthy of credit
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
$\mathbf{()}$	Words which are not essential to gain credit
-	Underlined words must be present in answer to score a mark
ecf	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

CATEGORISATION OF MARKS

The marking schemes categorise marks on the MACB scheme.
B marks:
These are awarded as independent marks, which do not depend on other marks. For a B-mark to be scored, the point to which it refers must be seen specifically in the candidate's answers.

M marks: These are method marks upon which A-marks (accuracy marks) later depend. For an M-mark to be scored, the point to which it refers must be seen in the candidate's answers. If a candidate fails to score a particular M-mark, then none of the dependent Amarks can be scored.

C marks: These are compensatory method marks which can be scored even if the points to which they refer are not written down by the candidate, providing subsequent working gives evidence that they must have known it. For example, if an equation carries a C-mark and the candidate does not write down the actual equation but does correct working which shows the candidate knew the equation, then the C-mark is given.

A marks: These are accuracy or answer marks, which either depend on an M-mark, or allow a C-mark to be scored.

Note about significant figures:

If the data given in a question is to 2 sf , then allow answers to 2 or more significant figures.
(Significant figures are rigorously assessed in the practical skills.)

Question			Answers		Marks	Guidance
1	(a)		electric field strength = force per unit (positive) charge		B1	Allow: force/charge Not: F/Q
	(b)	(i)	$\begin{aligned} & E=V / d \\ & 3.0 \times 10^{6}=V / 1.3 \times 10^{-3} \\ & V=3900(\mathrm{~V}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: This mark is for correct substitution Allow: 1 mark if answer is $3.9 \times 10^{n}(V), n \neq 3-P O T$ error
		(ii)1	$\begin{aligned} & Q=I t \\ & Q=2.7 \times 10^{-9} \times 4.0 \times 10^{-2} \\ & \text { charge }=1.1 \times 10^{-10}(\mathrm{C}) \text { or } 1.08 \times 10^{-10}(\mathrm{C}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: This mark is for correct substitution
		(ii)2	$\begin{aligned} & \text { number }=1.08 \times 10^{-10} / 1.6 \times 10^{-19} \\ & \text { number }=6.8 \times 10^{8} \text { or } 6.75 \times 10^{8} \end{aligned}$		B1	Possible ecf from (b)(ii)1
		(iii)	$\begin{aligned} & \text { energy }=V Q \\ & \text { energy }=3900 \times 1.08 \times 10^{-10} \\ & \text { energy }=4.2 \times 10^{-7}(\mathrm{~J}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Note: No credit for using $1 / 2$ QV Possible ecf from (b)(ii)1
				Total	8	

Question			Answers	Marks	Guidance
2	(a)		torque $=$ one of the forces \times perpendicular distance (between the forces)	B1	
	(b)	(i)	Into (plane of) paper	B1	Not: 'down'
		(ii)1	$\begin{aligned} & \text { force }=B I L=0.060 \times 0.03 \times 0.015 \\ & \text { force }=2.7 \times 10^{-5}(\mathrm{~N}) \end{aligned}$	B1	
		(ii)2	$\begin{aligned} & \text { torque }=2.7 \times 10^{-5} \times 0.015 \\ & \text { torque }=4.1 \times 10^{-7}(\mathrm{~N} \mathrm{~m}) \text { or } 4.05 \times 10^{-7}(\mathrm{~N} \mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (b)(ii)1 Do not allow $4.0 \times 10^{-7}(\mathrm{~N} \mathrm{~m})$ - rounding error
	(c)	(i)	$\begin{aligned} & F=B Q V \\ & 2.0 \times 10^{-13}=0.14 \times Q \times 4.5 \times 10^{6} \\ & \text { charge }=3.2 \times 10^{-19}(\mathrm{C}) \text { or } 3.17 \times 10^{-19}(\mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: Any subject
		(ii)	$\begin{aligned} & F=m v^{2} / r \\ & 2.0 \times 10^{-13}=\frac{2.7 \times 10^{-26} \times\left(4.5 \times 10^{6}\right)^{2}}{r} \\ & \text { radius }=2.7(\mathrm{~m}) \text { or } 2.73(\mathrm{~m}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: Any subject
		(iii)	$B Q v=m v^{2} / r$ Hence, radius \propto mass	$\begin{aligned} & \hline \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: $r \propto m$
			Total	12	

Question			Answers	Marks	Guidance
3	(a)		magnetic flux $=$ (magnetic) flux density \times (cross-sectional) area Idea of (magnetic) field normal to the plane of the area	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	Allow full credit for magnetic flux $=B A$, where $B=$ magnetic flux density normal to area and $A=$ (cross-sectional) area
(b)		(i)	constant rate of change of (magnetic) flux / flux density	B1	Not: 'graph has constant gradient’
		(ii)	$\begin{aligned} & \text { e.m.f. }=\text { rate of change of flux linkage } \\ & \text { e.m.f. }=\frac{1.4 \times 10^{-2} \times \pi \times\left(3.2 \times 10^{-2}\right)^{2} \times 180}{2.5} \\ & \text { e.m.f. }=3.2 \times 10^{-3}(\mathrm{~V}) \text { or } 3.24 \times 10^{-3}(\mathrm{~V}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: $E=\frac{\Delta N \phi}{\Delta t}$ Deduct 1 mark if B is misread from the graph and then ecf Allow: 2 marks for an answer 3.24×10^{n} (if $n \neq-3$) Allow: 2 marks for 1.78×10^{-5} (when 180 has been missed out)
	(c)	(i)	$\begin{aligned} & P=V I \\ & \text { current in secondary }=15 / 6 \text { or } 2.5(\mathrm{~A}) \\ & \text { primary voltage }=6.0 \times \text { turn ratio }=6.0 \times 40=240(\mathrm{~V}) \\ & V_{\mathrm{p}}=240(\mathrm{~V}) \quad \text { or } \quad I_{\mathrm{s}}=2.5(\mathrm{~A}) \\ & \text { primary current }=2.5 / 40 \text { or } 15 / 240 \\ & \text { input current }=6.3 \times 10^{-2}(\mathrm{~A}) \text { or } 6.25 \times 10^{-2}(\mathrm{~A}) \end{aligned}$	C1 A1	The C1 mark is for either of these values
		(ii)	There is no change in flux density / (magnetic) flux / (magnetic) flux linkage	B1	Not: 'There is no change in the magnetic field'
			Total	9	

Question			Answers		Marks	Guidance
4	(a)		$\begin{aligned} & \text { capacitance }=\text { charge/p.d. } \\ & \text { or capacitance }=\text { charge per (unit) p.d. } \end{aligned}$		B1	Allow: voltage instead of p.d. Note: Do not allow mixture of quantity and unit, e.g. 'charge per (unit) volt'
	(b)	(i)	$\begin{aligned} & C_{\text {parallee }}=240(\mu \mathrm{~F}) \\ & C_{\mathrm{T}}=(240 \times 120) /(240+120) \text { or } C_{\mathrm{T}}=\left(240^{-1}+120^{-1}\right)^{-1} \\ & \text { total capacitance }=80(\mu \mathrm{~F}) \end{aligned}$		$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { A0 } \end{aligned}$	Allow :1 mark if C_{T} is not the subject, e.g: $\frac{1}{C_{T}}=\frac{1}{240}+\frac{1}{120}$
		(ii)	$\begin{aligned} & E=\frac{1}{2} V^{2} C \\ & E=\frac{1}{2} \times 6.0^{2} \times 80 \times 10^{-6} \\ & \text { energy }=1.4 \times 10^{-3}(\mathrm{~J}) \text { or } 1.44 \times 10^{-3}(\mathrm{~J}) \end{aligned}$		$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Possible ecf Allow: 1 mark for an answer $1.44 \times 10^{n}(\mathrm{n} \neq-3)$
		(iii)1	6.0/e $=2.2(\mathrm{~V})$ (as on graph) Or $6.0 \times 0.37=2.2(\mathrm{~V})$ (as on graph) Or At $20(\mathrm{~s}), V=2.2(\mathrm{~V}), 2.2 / 6.0=0.37\left(\right.$ or $\left.e^{-1}\right)$		B1	Allow: Graph reading within $\pm 0.2 \mathrm{~V}$
		(iii)2	$\begin{aligned} & C R=20 \\ & R=\frac{20}{80 \times 10^{-6}} \\ & R=2.5 \times 10^{5}(\Omega) \end{aligned}$		C1 A1	Allow: Follow through with $C R$ value from (iii)1
				Total	8	

Question			Answers	Marks	Guidance
5	(a)		Same charge / number of protons	B1	Not: 'same chemical property'
	(b)		strong (nuclear force / interaction) gravitational (force)	$\begin{aligned} & \text { B1 } \\ & \text { B1 } \end{aligned}$	Allow: 'gravity'
	(c)	(i)	${ }_{7}^{15} \mathrm{~N}$	B1	
		(ii)	$(\mathrm{udd}) \rightarrow(\mathrm{u} u \mathrm{~d})$	B1	Allow: One down quark becomes up quark or $\mathrm{d} \rightarrow \mathrm{u}(+$ electron + antineutrino $)$
	(d)	(i)	$\begin{aligned} & 0.16 \mathrm{MeV}=0.16 \times 10^{6} \times 1.6 \times 10^{-19} \\ & \frac{1}{2} \times 9.11 \times 10^{-31} \times v^{2}=2.56 \times 10^{-14} \\ & \text { speed }=2.4 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \text { or } 2.37 \times 10^{8}\left(\mathrm{~m} \mathrm{~s}^{-1}\right) \end{aligned}$	C1 A1	Allow: 1 mark for using 9.8 MeV ; answer is equal to $1.86 \times 10^{9}\left(\mathrm{~m} \mathrm{~s}^{-1}\right)$
		(ii)	The mass of the electron increases / greater than 'rest mass'	B1	
	(e)	(i)	$\begin{aligned} & \lambda=0.693 / T \\ & \lambda=0.693 /\left(5560 \times 3.16 \times 10^{7}\right) \\ & \lambda=3.9 \times 10^{-12}\left(\mathrm{~s}^{-1}\right) \text { or } 3.94 \times 10^{-12}\left(\mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Allow: 1 mark for 1.25×10^{-4} (if 5560 y used)
		(ii)	$\begin{aligned} & \text { number }=\frac{1.0 \times 10^{-3}}{14} \times 6.02 \times 10^{23} \\ & \text { number }=4.3 \times 10^{19} \end{aligned}$	M1 A0	Note: This step must be seen to score 1 mark
		(iii)	$\begin{aligned} & \text { activity }=\lambda N \\ & \text { activity }=3.94 \times 10^{-12} \times 4.3 \times 10^{19} \\ & \text { activity }=1.7 \times 10^{8}(\mathrm{~Bq}) \text { or } 1.69 \times 10^{8}(\mathrm{~Bq}) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (e)(i) and (e)(ii)

Ques	Answers	Marks	Guidance
(f)	Any three from: 1. Plants / living things take in carbon(-dioxide) or plants / living things stop taking in carbon after death 2. The ratio of carbon-14 to carbon-12 (nuclei) for the relic sample is determined 3. The current ratio of carbon-14 to carbon-12 nuclei is determined 4. The age of the relic is found using ' $x=x_{0} e^{-\lambda t}$, Limitation: The ratio of carbon-14 to carbon-12 is assumed to be constant / count(-rate) from relic may be comparable to background count(-rate)	B1×3	Must use ticks on Scoris to show where the marks are awarded Allow: Any other valid comment for the limitation
	Total	17	

Question			Answers		Marks	Guidance
6	(a)		(Minimum) energy to separate (all) nucleons / protons and neutrons (of a nucleus)		$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$	```Alternative: B.E. \(=\) mass defect \(\times c^{2} \quad\) M1 mass defect \(=\) mass of nucleons - mass of nucleus A1```
	(b)	(i)	$\begin{aligned} & \text { BE of }{ }^{2} \mathrm{H}=2 \times 1.8 \times 10^{-13}(\mathrm{~J}) \\ & \text { or BE of }{ }^{4} \mathrm{He}=4 \times 1.1 \times 10^{-12}(\mathrm{~J}) \\ & \text { energy }=\left(4 \times 1.1 \times 10^{-12}\right)-2 \times\left(2 \times 1.8 \times 10^{-13}\right) \\ & \text { energy }=3.68 \times 10^{-12}(\mathrm{~J}) / 3.7 \times 10^{-12}(\mathrm{~J}) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{A0} \end{aligned}$	Note: Ignore signs
		(ii)1	$\begin{aligned} & \text { total surface area }=4 \pi \times\left(1.5 \times 10^{11}\right)^{2} \\ & \text { power }=1400 \times\left(2.83 \times 10^{23}\right) \\ & \text { power }=3.96 \times 10^{26}(\mathrm{~W}) / 4.0 \times 10^{26}(\mathrm{~W}) \end{aligned}$		$\begin{aligned} & \text { C1 } \\ & \text { C1 } \\ & \text { AO } \end{aligned}$	
		(ii)2	$\begin{aligned} & \text { number }=4.0 \times 11^{26} / 3.7 \times 10^{-12} \\ & \text { number }=1.1 \times 10^{38}\left(\mathrm{~s}^{-1}\right) \text { or } 1.08 \times 10^{38}\left(\mathrm{~s}^{-1}\right) \end{aligned}$		$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: $10^{38}\left(\mathrm{~s}^{-1}\right)$ because the question is about an estimate
				Total	8	

Question			Answers	Marks	Guidance
7	(a)		Any two from: 1. Electrons are accelerated through high voltage 2. (High speed) electron(s) hit metal 3. kinetic energy of electron(s) 'produces' X-ray (photons)	$\mathrm{B} 1 \times 2$	Allow: X-rays are produced by (large) deceleration of electrons
-	(b)	(i)	Packet /quantum of (electromagnetic) energy	B1	Allow: 'particle of (electromagnetic) energy'
		(ii)	$E=h c / \lambda$ and X -rays have shorter wavelength Or $E=h f$ and X-rays have higher frequency	B1	
	(c)		$\begin{aligned} & (\mathrm{KE} \text { of electron }=) 1.6 \times 10^{-19} \times 120 \times 10^{3} \\ & e V=\frac{h c}{\lambda} \\ & 1.6 \times 10^{-19} \times 120 \times 10^{3}=\frac{6.63 \times 10^{-34} \times 3.0 \times 10^{8}}{\lambda} \\ & \text { wavelength }=1.0 \times 10^{-11}(\mathrm{~m}) \text { or } 1.04 \times 10^{-11}(\mathrm{~m}) \end{aligned}$	C1 C1 A1	Allow: 2 marks for $1.0(4) \times 10^{-n}(m)(n \neq 11$ - powers of ten error) Allow: $1 \times 10^{-11}(\mathrm{~m})$
	(d)		Compton (scattering) Incoming photon collides with an electron, the electron is ejected and the photon is scattered / has lower energy Or Pair production Incoming photon (disappears and) produces electron-positron pair	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1 } \\ \text { M1 } \end{gathered}$	Must use ticks on Scoris to show where the marks are awarded Allow: (Simple) scatter(ing) The photon is absorbed and re-emitted without change in energy/wavelength/frequency A1
			Total	9	

Question			Answers	Marks	Guidance
9	(a)		Any four from: 1. (Sun / star formed from) dust cloud /nebula / (hydrogen) gas 2. Gravitational collapse (AW) 3. Temperature of (dust) cloud increases / KE (of cloud) increases / (cloud) heats up 4. Fusion occurs (when temperature is about $10^{7} \mathrm{~K}$) 5. Protons / hydrogen nuclei combine to make helium (nuclei) 6. Stable size star is produced when thermal / radiation pressure is equal to gravitational pressure Steps sequenced correctly - QWC mark	$\mathrm{B} 1 \times 4$ B1	Must use ticks on Scoris to show where the marks are awarded
	(b)		Any two from: 1. Very dense star 2. Hot star / high surface temperature / low luminosity 3. No fusion reactions take place / leaks away photons (from earlier fusion reactions) 4. Its collapse is prevented by Fermi pressure / mass less than 1.4 solar masses (AW)	B1×2	Must use ticks on Scoris to show where the marks are awarded Not: small in size, but allow 'smaller than main sequence star / Sun'
	(c)	(i)	Flat or universe will expand towards a (finite) limit or the rate of expansion will become/tend to zero	B1	
		(ii)	$\begin{aligned} & \text { Hubble constant }=1 / \text { age } \\ & H_{0}=1 / 4.4 \times 10^{17}\left(=2.273 \times 10^{-18} \mathrm{~s}^{-1}\right) \\ & \text { density }=\frac{3 \mathrm{H}_{0}{ }^{2}}{8 \pi \mathrm{G}} \\ & \text { density }=\frac{3 H_{0}{ }^{2}}{8 \pi G}=\frac{3 \times\left(2.273 \times 10^{-18}\right)^{2}}{8 \pi \times 6.67 \times 10^{-11}} \\ & \text { density }=9.2 \times 10^{-27}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \text { or } 9.24 \times 10^{-27}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \\ & \text { density is about } 10^{-26}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right) \end{aligned}$	C1 C1 A1 AO	Allow: 2 marks for a bald $9.24 \times 10^{-27}\left(\mathrm{~kg} \mathrm{~m}^{-3}\right)$ answer Note: This mark can only be scored if working is shown

Question		Answers		Marks	Guidance
	(iii)	$\begin{aligned} & \text { number }=9.24 \times 10^{-27} / 1.7 \times 10^{-27} \\ & \text { number }=5.4 \quad \text { (Allow } 5) \end{aligned}$		$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Possible ecf from (c)(ii) Allow: 2 marks for ' $10^{-26} / 1.7 \times 10^{-27}=5.9$ or 6 '
(d)		$\begin{aligned} & \frac{1}{2} m v^{2}=\frac{3}{2} k T \quad / \quad \text { speed } \propto \sqrt{T} \\ & \text { ratio }=\sqrt{\frac{10^{8}}{2.7}} \\ & \text { ratio }=6.1 \times 10^{3} \text { or } 6.09 \times 10^{3} \end{aligned}$		C1 A1	
			Total	15	

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
Education and Learning
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU

Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553

